Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Rep Med ; 4(6): 101079, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-2322799

ABSTRACT

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Longitudinal Studies , Multiomics , Disease Progression
2.
Nat Aging ; 1(6): 496-497, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-2272750

ABSTRACT

Arthur et al. leverage different types of big data, either generated in house from cohorts of healthy aging and COVID-19, or downloaded from the ever-increasing public data archives, to disentangle the distinct cellular and proteomic mechanisms of COVID-19 and aging.

3.
Cell Rep ; 42(1): 111895, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2227691

ABSTRACT

T cell-B cell interaction is the key immune response to protect the host from severe viral infection. However, how T cells support B cells to exert protective humoral immunity in humans is not well understood. Here, we use COVID-19 as a model of acute viral infections and analyze CD4+ T cell subsets associated with plasmablast expansion and clinical outcome. Peripheral helper T cells (Tph cells; denoted as PD-1highCXCR5-CD4+ T cells) are significantly increased, as are plasmablasts. Tph cells exhibit "B cell help" signatures and induce plasmablast differentiation in vitro. Interestingly, expanded plasmablasts show increased CXCR3 expression, which is positively correlated with higher frequency of activated Tph cells and better clinical outcome. Mechanistically, Tph cells help B cell differentiation and produce more interferon γ (IFNγ), which induces CXCR3 expression on plasmablasts. These results elucidate a role for Tph cells in regulating protective B cell response during acute viral infection.


Subject(s)
COVID-19 , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , CD4-Positive T-Lymphocytes , COVID-19/metabolism , T-Lymphocytes, Helper-Inducer , Plasma Cells/metabolism , Receptors, CXCR5 , Receptors, CXCR3/metabolism
4.
EBioMedicine ; 83: 104208, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035962

ABSTRACT

BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.


Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin , Post-Acute COVID-19 Syndrome
5.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
6.
PLoS Biol ; 19(3): e3001143, 2021 03.
Article in English | MEDLINE | ID: covidwho-1138557

ABSTRACT

There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.


Subject(s)
Bronchi/pathology , COVID-19/diagnosis , Gene Expression , SARS-CoV-2/isolation & purification , Single-Cell Analysis/methods , Adult , Bronchi/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Epithelium/pathology , Epithelium/virology , Humans , Immunity, Innate , Longitudinal Studies , SARS-CoV-2/genetics , Transcriptome , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL